Instillation of Six Different Ultrafine Carbon Particles Indicates a Surface Area Threshold Dose for Acute Lung Inflammation in Mice
نویسندگان
چکیده
Increased levels of particulate air pollution are associated with increased respiratory and cardiovascular mortality and morbidity. Some epidemiologic and toxicologic research suggests ultrafine particles (UFPs) (< 100 nm) to be more harmful per unit mass than larger particles. Our study was aimed at a quantitative comparison of acute adverse effects of different types of carbonaceous UFPs at a dose range that causes a moderate inflammatory response in lungs. We used six different particle types (primary particle size 10-50 nm, specific surface area 30-800 m2/g, and organic content 1-20%): PrintexG, Printex90, flame soot particles with different organic content (SootL, SootH), spark-generated ultrafine carbon particles (ufCP), and the reference diesel exhaust particles (DEP) SRM1650a. Mice were instilled with 5, 20, and 50 microg of each particle type, and bronchoalveolar lavage was analyzed 24 hr after instillation for inflammatory cells and the level of proinflammatory cytokines. At respective mass-doses, particle-caused detrimental effects ranked in the following order: ufCP > SootL > or = SootH > Printex90 > PrintexG > DEP. Relating the inflammatory effects to the particle characteristics--organic content, primary particle size, or specific surface area--demonstrates the most obvious dose response for particle surface area. Our study suggests that the surface area measurement developed by Brunauer, Emmett, and Teller is a valuable reference unit for the assessment of causative health effects for carbonaceous UFPs. Additionally, we demonstrated the existence of a threshold for the particle surface area at an instilled dose of approximately 20 cm2, below which no acute proinflammatory responses could be detected in mice.
منابع مشابه
In Search of the Most Relevant Parameter for Quantifying Lung Inflammatory Response to Nanoparticle Exposure: Particle Number, Surface Area, or What?
BACKGROUND Little is known about the mechanisms involved in lung inflammation caused by the inhalation or instillation of nanoparticles. Current research focuses on identifying the particle parameter that can serve as a proper dose metric. OBJECTIVES The purpose of this study was to review published dose-response data on acute lung inflammation in rats and mice after instillation of titanium ...
متن کاملRole of the alveolar macrophage in lung injury: studies with ultrafine particles.
We conducted a series of experiments with ultrafine particles (approximately 20 nm) and larger particles (less than 200 nm) of "nuisance" dusts to evaluate the involvement of alveolar macrophages (AM) in particle-induced lung injury and particle translocation in rats. After intratracheal instillation of both ultrafine particles and larger particles of TiO2, we found a highly increased interstit...
متن کاملSize-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.
Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the pre...
متن کاملEffects of ultrafine carbon particle inhalation on allergic inflammation of the lung.
BACKGROUND Epidemiologic studies show that exposure to particulate air pollution is associated with asthma exacerbation. Ultrafine particles (diameter <100 nm) may contribute to these adverse effects. OBJECTIVE To investigate potential adjuvant activity of inhaled elemental carbon ultrafine particles (EC-UFPs) on allergic airway inflammation. METHODS The effects of ultrafine particle inhala...
متن کاملRelationship of pulmonary toxicity and carcinogenicity of fine and ultrafine granular dusts in a rat bioassay
The current carcinogenicity study with female rats focused on the toxicity and carcinogenicity of intratracheally instilled fine and ultrafine granular dusts. The positive control, crystalline silica, elicited the greatest magnitude and progression of pulmonary inflammatory reactions, fibrosis and the highest incidence of primary lung tumors (39.6%). Addition of poly-2-vinylpyridine-N-oxide dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 114 شماره
صفحات -
تاریخ انتشار 2006